These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. Author: Zhou R, Cheng L, Dandekar AM. Journal: J Exp Bot; 2006; 57(14):3647-57. PubMed ID: 16980595. Abstract: Both sorbitol and sucrose are translocated to, and utilized in, sink tissues of apple (Malus domestica). Considering that antisense suppression of aldose 6-phosphate reductase resulted in lower concentrations of sorbitol and higher concentrations of sucrose in source leaves without altering the vegetative growth of apple trees, it was hypothesized that sorbitol metabolism is down-regulated and sucrose metabolism is up-regulated in shoot tips of the transgenic plants. Carbohydrate measurements indicated that sorbitol concentration was lower whereas sucrose concentration was higher in the shoot tips of transgenic apple plants with decreased sorbitol synthesis compared with the untransformed control. However, the shoot relative growth rate was not altered in the transgenic plants. Sorbitol dehydrogenase (SDH) activity was decreased; acid invertase activity and neutral invertase activity remained the same, whereas sucrose synthase (SUSY) activity was increased in shoot tips of the transgenic plants. The SDH transcript level was lower whereas the SUSY transcript level was higher in shoot tips of the transgenic plants. SDH activity and SDH transcript level were specifically stimulated by exogenous sorbitol fed to the shoot tips via the transpiration stream but were specifically inhibited by sucrose. SUSY activity and SUSY transcript level were dramatically enhanced by sucrose, but decreased by glucose and fructose. Neither acid invertase nor neutral invertase activity responded to sucrose, glucose, fructose, or any other sugars tested. It is concluded that sorbitol dehydrogenase is down-regulated, whereas sucrose synthase is up-regulated in shoot tips of the transgenic apple trees with decreased sorbitol synthesis, leading to homeostasis of vegetative growth. Sorbitol and sucrose act as signal molecules to modulate the expression and activities of sorbitol dehydrogenase and sucrose synthase, both of which play an important role in determining the sink strength of apple shoot tips.[Abstract] [Full Text] [Related] [New Search]