These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest.
    Author: Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TL, Steen PA, Becker LB.
    Journal: Resuscitation; 2006 Nov; 71(2):137-45. PubMed ID: 16982127.
    Abstract:
    BACKGROUND: Cardiopulmonary resuscitation (CPR) and electrical defibrillation are the primary treatment options for ventricular fibrillation (VF). While recent studies have shown that providing CPR prior to defibrillation may improve outcomes, the effects of CPR quality remain unclear. Specifically, the clinical effects of compression depth and pauses in chest compression prior to defibrillation (pre-shock pauses) are unknown. METHODS: A prospective, multi-center, observational study of adult in-hospital and out-of-hospital cardiac resuscitations was conducted between March 2002 and December 2005. An investigational monitor/defibrillator equipped to measure compression characteristics during CPR was used. RESULTS: Data were analyzed from 60 consecutive resuscitations in which a first shock was administered for VF. The primary outcome was first shock success defined as removal of VF for at least 5s following defibrillation. A logistic regression analysis demonstrated that successful defibrillation was associated with shorter pre-shock pauses (adjusted odds ratio 1.86 for every 5s decrease; 95% confidence interval 1.10-3.15) and higher mean compression depth during the 30s of CPR preceding the pre-shock pause (adjusted odds ratio 1.99 for every 5mm increase; 95% confidence interval 1.08-3.66). CONCLUSIONS: The quality of CPR prior to defibrillation directly affects clinical outcomes. Specifically, longer pre-shock pauses and shallow chest compressions are associated with defibrillation failure. Strategies to correct these deficiencies should be developed and consideration should be made to replacing current-generation automated external defibrillators that require long pre-shock pauses for rhythm analysis.
    [Abstract] [Full Text] [Related] [New Search]