These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Author: Dagnino L, Paterson AR.
    Journal: Cancer Res; 1990 Oct 15; 50(20):6549-53. PubMed ID: 1698538.
    Abstract:
    The presence of 10 microM dipyridamole in incubation media of L1210/C2 cells decreased initial rates of zero-trans influx of formycin B (FB, 50 microM), a poorly metabolized inosine analogue, from 4.84 pmol/microliters cell water/s to 0.87 pmol/microliter cell water/s. However, after a 5-min interval of uptake, free FB levels in dipyridamole-treated cells were 165 pmol/microliters cell water, 2.3-fold greater than in dipyridamole-free cultures. This indicated the presence of a concentrative, dipyridamole-insensitive nucleoside transport (NT) system in L1210 cells, in addition to the equilibrative NT systems known to be expressed in these cells. The concentrative system was demonstrable only in the presence of NT inhibitors and required extracellular Na+. The presence of 8 microM 6-[(4-nitrobenzyl)thio]-9-beta-D- ribofuranosylpurine or 15 microM dilazep also induced an accumulation of free FB above steady-state levels, although of a lesser magnitude than that observed with dipyridamole. It appears that NT inhibitors induced nucleoside accumulation by inhibiting bidirectional nucleoside movements mediated by the equilibrative component of nucleoside transport in L1210/C2 cells without interfering with inward FB fluxes mediated by the Na(+)-dependent transporter. The presence of NT inhibitors also enhanced the cellular accumulation and retention of arabinosyladenine and its 5'-triphosphate in these cells. The increased cellular accumulation of 9-beta-D-arabinofuranosyladenine and 9-beta-D-arabinofuranosyladenine triphosphate by dipyridamole was associated with enhanced antiproliferative activity of 9-beta-D-arabinofuranosyladenine towards the leukemia cells.
    [Abstract] [Full Text] [Related] [New Search]