These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons.
    Author: D'Arpa P, Beardmore C, Liu LF.
    Journal: Cancer Res; 1990 Nov 01; 50(21):6919-24. PubMed ID: 1698546.
    Abstract:
    The primary cytotoxic mechanism of camptothecin has been proposed to involve an interaction between the replication machinery and the camptothecin-mediated topoisomerase I-DNA cleavable complex (Y. H. Hsiang, M.G. Lihou, and L.F. Liu, Cancer Res., 49:5077-5082, 1989). In the present study, we show that killing of V79 cells by the topoisomerase II poisons 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide may involve ongoing RNA synthesis in addition to ongoing DNA synthesis. V79 cells synchronized by mitotic shake-off were treated with topoisomerase poisons in the presence of inhibitors of nucleic acid synthesis. S-Phase V79 cells were more sensitive to the topoisomerase I poison camptothecin and the topoisomerase II poison m-AMSA than G1-phase cells. The greater sensitivity of S-phase cells to killing by m-AMSA and camptothecin was abolished during cotreatment, but not posttreatment, with aphidicolin, suggesting that ongoing DNA synthesis in involved in cell killing by both topoisomerase I and II poisons. Cotreatment with transcription inhibitors, such as 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole or cordycepin, partially protected cells from the cytotoxic effects of m-AMSA but had no effect on camptothecin-mediated cytotoxicity. These results suggest that ongoing RNA transcription may be involved in cell killing by topoisomerase II poisons but not topoisomerase I poisons. Cotreatment with camptothecin reduced m-AMSA-mediated cytotoxicity in G1-phase V79 cells, suggesting a possible antagonism between topoisomerase I and II poisons. This antagonistic effect between topoisomerase I and II poisons could be explained by the strong inhibitory effect of camptothecin on RNA transcription.
    [Abstract] [Full Text] [Related] [New Search]