These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peptidergic innervation in the cerebral blood vessels of the guinea pig: an immunohistochemical study.
    Author: Nakakita K.
    Journal: J Cereb Blood Flow Metab; 1990 Nov; 10(6):819-26. PubMed ID: 1698799.
    Abstract:
    The distribution of peptidergic nerve fibers containing substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), and neuropeptide Y (NPY) in the cerebral arteries and veins of the guinea pig was studied using immunohistochemical techniques. The ultrastructure of these immunoreactive nerve terminals was also compared. The cerebral arteries were innervated by abundant peptidergic nerve fibers with characteristic running patterns, i.e., SP fibers in a meshwork, VIP and NPY fibers in a spiral fashion. Only CGRP fibers showed both meshwork and spiral patterns. In the cerebral veins, the abundant SP fibers innervated the cortical veins, deep cerebral veins, and dural sinuses. However, CGRP, VIP, and NPY fibers in extremely low density were noted merely in the cortical veins. Electron microscopic observations demonstrated that SP-immunoreactive nerve terminals existed apart from the arterial smooth muscle cells, while VIP- and NPY-immunoreactive nerve terminals adjoined them. As for CGRP nerve terminals, some existed close to the arterial smooth muscle cells, and others were found some distance from them. These morphological characteristics observed by light and electron microscopy suggest that SP fibers are not related directly to the vasomotor function, but VIP and NPY fibers are, and that CGRP fibers have a more complicated function. The distribution patterns of the peptidergic nerve fibers are consistent with the suggestion that vasomotor peptidergic fibers may function actively on cerebral arteries and passively on cerebral veins and that SP fibers regarded as sensory fibers may provide information regarding cerebral vascular conditions, innervating every part of both cerebral arteries and veins.
    [Abstract] [Full Text] [Related] [New Search]