These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of surface glycoproteins early in leech neural development. Author: McGlade-McCulloh E, Muller KJ, Zipser B. Journal: J Comp Neurol; 1990 Sep 01; 299(1):123-31. PubMed ID: 1698836. Abstract: Cell migration and axon growth during neural development rely upon cell-cell and cell-matrix interactions mediated by surface glycoproteins. The surface glycoprotein recognized on leech neurons by monoclonal antibody Lan3-2 has previously been implicated in the process of axon fasciculation during regeneration in adults. In adult leeches, Lan3-2 binds to a carbohydrate epitope of a 130 kD protein. The present study demonstrates that in embryos the antibody binds to the same carbohydrate epitope of glycoproteins with molecular weights of 130 kD and higher. As a first step in evaluating a possible role of the Lan3-2 glycoprotein or the cells that express it during neural development, we determined its distribution in the developing nervous system of the leech Hirudo medicinalis. In embryos, Lan3-2 epitope is expressed on fasciculated sensory afferents and it appears on the cell bodies before neurite outgrowth. The sensory fibers appear rostrally by embryonic day 10, less than halfway through development. Earlier, by 7 days of development at 20 degrees C, Lan3-2 binds to previously undocumented cell types: (1) cells appearing along the embryonic midline and (2) a cluster of cells located at the rostral edge of the germinal plate. These cells only transiently express this antigen and are present at critical left-right and rostrocaudal boundaries during a period of cell proliferation, movement, and migration that produces the nervous system. Thus the Lan3-2 surface glycoprotein or the cells expressing it are candidates for involvement in axon fasciculation, cell migration, and directed axonal growth.[Abstract] [Full Text] [Related] [New Search]