These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A spin-label study on fusion of red blood cells induced by hemagglutinating virus of Japan.
    Author: Maeda T, Asano A, Oki K, Okada Y, Onishi S.
    Journal: Biochemistry; 1975 Aug 26; 14(17):3736-41. PubMed ID: 169884.
    Abstract:
    Fusion of red blood cells (RBC) induced by hemagglutinating virus of Japan (HVJ) has been studied using a phosphatidylcholine spin label. The spin label was readily incorporated and diffused into the lipid bilayer portion of the viral envelope. The exchange broadening in the electron spin resonance (ESR) spectrum of densely labeled virus disappeared rapidly when the virus was mixed with RBC at 37 degrees. The spectrum gradually approached that of the host cell spin labeled with the phosphatidylcholine label. The results directly indicate transfer and intermixing of phospholipid molecules between the viral envelope and RBC membrane. The transfer reaction was strongly dependent on temperature. No transfer was observed at lower temperatures where the virus adsorbed to the cell and caused aggregation but no hemolysis and fusion. The transfer rate remained negligibly small until 19 degrees and increased rapidly between 25 and 30 degrees. The virus-induced hemolysis showed similar temperature dependence. The transfer rate was greatly reduced under inhibitory conditions of fusion: glutaraldehyde treatment of RBC, trypsin treatment of HVJ, or the presence of concanavalin A. Only slight transfer was observed from fusion-inactive influenza virus to RBC. The transfer was greatly enhanced by the help of HVJ. The close parallelism suggests that the transfer and intermixing are necessary steps to the cell fusion. The transfer rate was dependent on fluidity of the host cell membrane and independent of the viral dose. The virus-induced transfer of phospholipid molecules between RBC's was also detected by the spin label. Its temperature dependence was quite similar to that for the virus-to-cell transfer. The intercellular transfer was nearly proportional to the viral dose.
    [Abstract] [Full Text] [Related] [New Search]