These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Trojan horse transition state analogue generated by MgF3- formation in an enzyme active site. Author: Baxter NJ, Olguin LF, Golicnik M, Feng G, Hounslow AM, Bermel W, Blackburn GM, Hollfelder F, Waltho JP, Williams NH. Journal: Proc Natl Acad Sci U S A; 2006 Oct 03; 103(40):14732-7. PubMed ID: 16990434. Abstract: Identifying how enzymes stabilize high-energy species along the reaction pathway is central to explaining their enormous rate acceleration. beta-Phosphoglucomutase catalyses the isomerization of beta-glucose-1-phosphate to beta-glucose-6-phosphate and appeared to be unique in its ability to stabilize a high-energy pentacoordinate phosphorane intermediate sufficiently to be directly observable in the enzyme active site. Using (19)F-NMR and kinetic analysis, we report that the complex that forms is not the postulated high-energy reaction intermediate, but a deceptively similar transition state analogue in which MgF(3)(-) mimics the transferring PO(3)(-) moiety. Here we present a detailed characterization of the metal ion-fluoride complex bound to the enzyme active site in solution, which reveals the molecular mechanism for fluoride inhibition of beta-phosphoglucomutase. This NMR methodology has a general application in identifying specific interactions between fluoride complexes and proteins and resolving structural assignments that are indistinguishable by x-ray crystallography.[Abstract] [Full Text] [Related] [New Search]