These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Up-regulation of bone morphogenetic protein receptor IB by growth factors enhances BMP-2-induced human bone cell functions. Author: Singhatanadgit W, Salih V, Olsen I. Journal: J Cell Physiol; 2006 Dec; 209(3):912-22. PubMed ID: 17001689. Abstract: Bone morphogenetic proteins (BMP) stimulate osteoblast differentiation by signal transduction via three BMP receptors (BMPR-IA, -IB, and -II). Several growth factors, including transforming growth factor-beta1 (TGF-beta1), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-AB (PDGF-AB), have also been shown to play an important part in osteogenesis. The mechanism underlying these activities is unclear, but these growth factors could modulate the BMP/BMPR pathway by up-regulating BMPR expression, thereby enhancing the osteogenic responses of bone cells to the BMP. In this study we have therefore examined the effects of TGF-beta1, FGF-2, and PDGF-AB on BMPR expression and BMP-2-mediated osteoblast functions in primary human bone cells. The results showed that although the ligand BMP-2 and growth factors had little effect on BMPR-IA and -II transcript expression, they significantly up-regulated BMPR-IB mRNA specifically. However, only the growth factors, but not the ligand BMP-2, increased the surface expression of the BMPR-IB antigen, which was found to be due to a differential effect of BMP-2 and the growth factors on the Smurf1/Smad6-induced breakdown process. Pre-incubation of the cells with the growth factors significantly augmented BMP-2-induced Smad1/5/8 phosphorylation, and Dlx5 expression ALP activity, compared with that of cells treated with BMP-2 alone. When cells were transfected with siRNA targeting BMPR-IB, the growth factors neither up-regulated BMPR-IB transcript expression nor enhanced BMP-2-induced Smad1/5/8 phosphorylation, Dlx5 expression and ALP activity. The results indicate that increased BMPR-IB by TGF-beta1, FGF-2, and PDGF-AB significantly enhances BMP-2-induced osteogenic functions in vitro, suggesting that they might positively modulate bone formation by up-regulating BMPR-IB in vivo.[Abstract] [Full Text] [Related] [New Search]