These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic and thermodynamic parameters for oxygen binding to the allosteric states of Panulirus interruptus hemocyanin. Author: Antonini E, Brunori M, Colosimo A, Kuiper HA, Zolla L. Journal: Biophys Chem; 1983 Sep; 18(2):117-24. PubMed ID: 17005124. Abstract: The temperature dependence of the oxygen binding equilibria and kinetics of Panulirus interruptus hemocyanin has been analyzed within the context of the two-state allosteric model. Oxygenation of the T-state is characterized by a more negative value of DeltaH than that of the R-state; therefore, cooperative effects in oxygen binding to P. interruptus hemocyanin are thermodynamically governed by favorable entropy changes. The allosteric transition in the unliganded derivative shows an enthalpy-entropy compensation effect. The activation enthalpies for oxygenation and deoxygenation of the T-state are larger than those for the R-state, while the activation entropies are favorable for the T-state and unfavorable for the R-state. Thus, the activation free energies for oxygen binding to the T- and R-states are similar, while for the deoxygenation reaction DeltaG++ is smaller for the T-state. The analysis reported confirms the applicability of the Monod-Wyman-Changeux two-state allosteric model to P. interruptus hemocyanin and yields a complete thermodynamic characterization of oxygen binding under both equilibrium and dynamic regimes.[Abstract] [Full Text] [Related] [New Search]