These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyglutamine-expanded ataxin-7 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons. Author: Wang HL, He CY, Chou AH, Yeh TH, Chen YL, Li AH. Journal: Cell Signal; 2007 Mar; 19(3):573-81. PubMed ID: 17005371. Abstract: Our recent study indicated that polyglutamine-expanded ataxin-7-Q75 induced apoptotic death of cultured cerebellar neurons by downregulating Bcl-x(L) expression and activating mitochondrial apoptotic cascade. Mutant polyglutamine-expanded proteins are believed to impair the proteolytic function of ubiquitin-proteasome system by sequestering components of proteasomes. Proteasome degradation of IkappaBalpha permits nuclear translocation of NF-kappaB and is required for continuous NF-kappaB activity, which supports the survival of cultured cerebellar neurons by inducing Bcl-x(L) expression. Thus, we tested the hypothesis that mutant ataxin-7-Q75 causes proteasome dysfunction and impairs NF-kappaB activity, leading to reduced Bcl-x(L) expression, caspase activation and cerebellar neuronal death. EMSA assays indicate that DNA-binding activity of NF-kappaB was significantly decreased in cerebellar neurons expressing ataxin-7-Q75. Similar to mutant ataxin-7-Q75, NF-kappaB inhibitor APEQ induced cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Mutant ataxin-7-Q75 inhibited the proteolytic activity of proteasomes in cerebellar neurons. Proteasome inhibitor MG132 also caused cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Both ataxin-7-Q75 and MG132 caused the cytosolic accumulation of IkappaBalpha in cerebellar neurons. Mutant ataxin-7-Q75 or MG132 increased the cytosolic level of NF-kappaB p65 and decreased the nuclear NF-kappaB p65 level. Our study provides the evidence that polyglutamine-expanded ataxin-7-Q75 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons.[Abstract] [Full Text] [Related] [New Search]