These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice.
    Author: Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG.
    Journal: Neuromuscul Disord; 2006 Dec; 16(12):845-54. PubMed ID: 17005404.
    Abstract:
    It is well-known that muscles from mdx mice are more susceptible to membrane damage from eccentric contractions than wild-type muscles. The present study tested the hypothesis that the stretch-induced membrane permeability in dystrophic muscle is due to Ca(2+) entry through stretch-activated channels (SACs) and the subsequent activation of Ca(2+) -dependent degradative pathways. Eccentric contractions were carried out on muscles from mdx and wild-type mice, both on isolated muscles and on intact mice subjected to downhill running on a treadmill. In isolated muscles the SAC blockers, streptomycin and GsMTx4, improved force and significantly reduced the uptake of procion orange dye into fibres from mdx muscles, which increased progressively over 60 min after the eccentric contractions. In experiments on intact mdx mice, streptomycin also partially prevented the reduced force and the increased membrane permeability (Evans Blue Dye uptake). The results suggest that Ca(2+) entry through SACs activates Ca(2+) -dependent pathways, which are the main cause of the increased membrane permeability in mdx muscle.
    [Abstract] [Full Text] [Related] [New Search]