These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking. Author: Haridas C, Zehr EP, Misiaszek JE. Journal: J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610. Abstract: Cutaneous reflexes evoked in the muscles of the arms with electrical stimulation of nerves of the foot ("interlimb reflexes") are observed during walking. These reflexes have been suggested to coordinate the actions of the legs and arms when walking is disturbed. Recently, we showed that cutaneous reflexes evoked in the leg muscles after stimulation at the foot are modulated according to the level of postural threat during walking. We hypothesized that the amplitude of interlimb cutaneous reflexes would similarly be modulated when subjects walk in unstable environments. Subjects walked on a treadmill under four walking conditions: 1) normal; 2) normal with unpredictable anterior-posterior (AP) perturbations; 3) arms crossed; and 4) arms crossed with unpredictable AP perturbations. Interlimb reflexes evoked from electrical stimulation of the right superficial peroneal or sural nerves were recorded bilaterally, at four points of the step cycle. These reflexes were compared between conditions in which the arms were moving in a similar manner: 1) normal versus AP walking and 2) arms crossed versus arms crossed with AP perturbations. Differences in reflex amplitudes between arms-crossed conditions were observed in most upper limb muscles when subjects were perturbed while walking compared with undisturbed walking. This effect was less apparent when the arms were swinging freely. The results indicate that the strength of interlimb connections is influenced by the level of postural threat (i.e., the context of the behavior), thereby suggesting that these reflexes serve a functional link between the legs and arms during locomotion.[Abstract] [Full Text] [Related] [New Search]