These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Author: O'Brien J, Kla KM, Hopkins IB, Malecki EA, McKenna MC. Journal: Neurochem Res; 2007; 32(4-5):597-607. PubMed ID: 17006762. Abstract: Lactate is potentially a major energy source in brain, particularly following hypoxia/ischemia; however, the regulation of brain lactate metabolism is not well understood. Lactate dehydrogenase (LDH) isozymes in cytosol from primary cultures of neurons and astrocytes, and freshly isolated synaptic terminals (synaptosomes) from adult rat brain were separated by electrophoresis, visualized with an activity-based stain, and quantified. The activity and kinetics of LDH were determined in the same preparations. In synaptosomes, the forward reaction (pyruvate + NADH + H(+ )--> lactate + NAD(+)), which had a V (max) of 1,163 micromol/min/mg protein was 62% of the rate in astrocyte cytoplasm. In contrast, the reverse reaction (lactate + NAD(+ )--> pyruvate + NADH + H(+)), which had a V (max) of 268 micromol/min/mg protein was 237% of the rate in astrocytes. Although the relative distribution was different, all five isozymes of LDH were present in synaptosomes and primary cultures of cortical neurons and astrocytes from rat brain. LDH1 was 14.1% of the isozyme in synaptic terminals, but only 2.6% and 2.4% in neurons and astrocytes, respectively. LDH5 was considerably lower in synaptic terminals than in neurons and astrocytes, representing 20.4%, 37.3% and 34.8% of the isozyme in these preparations, respectively. The distribution of LDH isozymes in primary cultures of cortical neurons does not directly reflect the kinetics of LDH and the capacity for lactate oxidation. However, the kinetics of LDH in brain are consistent with the possible release of lactate by astrocytes and oxidative use of lactate for energy in synaptic terminals.[Abstract] [Full Text] [Related] [New Search]