These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Abilities of cumulus and granulosa cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects. Author: Ikeda S, Saeki K, Imai H, Yamada M. Journal: Reproduction; 2006 Oct; 132(4):549-57. PubMed ID: 17008466. Abstract: We previously reported that when midkine (MK), a heparin-binding growth differentiation factor was used in in vitro maturation (IVM) culture of bovine cumulus-enclosed oocytes (CEOs), their developmental competence to the blastocyst stage after in vitro fertilization (IVF) was enhanced and the effect of MK might be mediated by its action upon mural granulosa cells and cumulus cells that closely surround the oocyte. In the present study, when denuded oocytes (DOs) were matured in IVM medium with or without MK (200 ng/ml) in the presence or absence of isolated cumulus cell masses and subjected to IVF, the enhancing effects of MK on the developmental competence of DOs to the blastocyst stage after IVF were exerted only in the presence of cumulus cells. In addition, we prepared the conditioned media of granulosa cells cultured with or without 200 ng MK/ml (CMMK+ or CMMK- respectively) and examined their effects on the IVM of DOs in terms of their developmental competence to the blastocyst stage after IVF. The supplementation of CMMK+ into IVM medium at 40% (v/v) significantly enhanced the blastocyst development compared with the no additive control and the CMMK- supplemented groups. Furthermore, the effects of MK during IVM of bovine CEOs on the cumulus cell apoptosis were investigated. CEOs were cultured up to 24 h in IVM medium without (control) or with 200 ng MK/ml. The genomic DNA was extracted from CEOs at 0, 6, 12, 18 and 24 h of IVM and subjected to ligation-mediated PCR (LM-PCR) to detect the apoptotic internucleosomal DNA fragmentation. DNA fragmentation was scarcely detected at the start of IVM, whereas it increased time-dependently as the IVM culture progressed. The degree of the fragmentation was significantly lower in the MK-treatment group compared with the control group at 18 and 24 h of IVM. The apoptosis-suppressing effect of MK on cumulus cells was further confirmed in situ by using TUNEL on CEOs. In conclusion, data from the present study further confirmed that MK enhances the developmental competence of bovine oocytes via cumulus and granulosa cells. It was also demonstrated that MK suppresses the apoptosis that occurs in cumulus cells during the period of IVM of bovine CEOs. The putative soluble factor(s) from cumulus cells was suggested from the experiment using CMMK+ . MK may promote the production of such factors in part by its anti-apoptotic effects on cumulus cells.[Abstract] [Full Text] [Related] [New Search]