These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Post-translational modifications of Trypanosoma cruzi histone H4.
    Author: da Cunha JP, Nakayasu ES, de Almeida IC, Schenkman S.
    Journal: Mol Biochem Parasitol; 2006 Dec; 150(2):268-77. PubMed ID: 17010453.
    Abstract:
    Histone tails provide sites for a variety of post-translational modifications implicated in the control of gene expression and chromatin assembly. As both histones and control of gene expression in trypanosomes are highly divergent compared to most eukaryotes, post-translational modifications of Trypanosoma cruzi histones were investigated. After in vivo incubation of live parasites with radiolabeled precursors, histone H4 mainly incorporates [(3)H]-acetyl, and to a lesser extent [(3)H]-methyl residues. In contrast, histone H3 preferentially incorporates [(3)H]-methyl residues. The modifications of histone H4 were further characterized by mass spectrometry. MALDI-TOF-TOF-MS analysis revealed that peptides from histone H4 amino-terminus, obtained by either endoproteinase Glu-C or endoproteinase Arg-C digestion, contain isoforms with 14 and 42Da additions, suggesting the presence of simultaneous acetylations and/or methylations. Tandem mass spectrometry analysis demonstrated that the N-terminal alanine is methylated, and lysine residues at positions 4, 10, 14 and 57 are acetylated; lysine at position 18 is mono-methylated, while arginine at position 53 is dimethylated. Immunoblotting analyses using specific antibodies raised against synthetic and acetylated peptides of T. cruzi histone H4 indicate that lysine 4 is acetylated in the majority of histone H4, while other acetylations at the N-terminus portion of histone H4 are less abundant.
    [Abstract] [Full Text] [Related] [New Search]