These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enrichment of PCDDs/PCDFs in the cooling system of municipal solid waste incineration plants. Author: Kim SC, Lee KC, Kim KH, Kwon MH, Song GJ. Journal: Waste Manag; 2007; 27(11):1593-602. PubMed ID: 17011179. Abstract: This study measured the levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), destroyed or formed in combustors and re-synthesized in cooling systems. For the proper control of PCDDs/PCDFs in municipal solid waste (MSW) incinerators, three grate-type MSW incinerators were selected, two of which had boilers, and one of which had a water spray tower (WST) as a cooling system. At the combustor outlets, dusts were in the range of 1640-4270 mg/Sm3 and PCDDs/PCDFs were in the range of 0.103-2.619 ng-TEQ/Sm3, showing the different values according to the grate structure of combustor and the flow direction of flue gas. After the flue gases passed through the cooling system, PCDDs/PCDFs at the waste heat boiler (WHB) outlets were enriched to levels that were 10.8-13.6 times higher than those at the furnace outlets, but PCDDs/PCDFs at the WST outlet was reduced to 5% of the level found at the furnace outlet. The emission patterns, such as the ratio of PCDFs to PCDDs, the ratio of gaseous-phase to particulate-phase PCDDs/PCDFs, and the compositional percentiles of each 2,3,7,8-substituted congener varied according to the types of air pollution control devices (APCDs). Reducing re-synthesis in the cooling system rather than enhancing the removal efficiencies of the APCDs seems to be more effective for lowering the levels of PCDDs/PCDFs in MSW incineration plants.[Abstract] [Full Text] [Related] [New Search]