These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay. Author: Roman DL, Talbot JN, Roof RA, Sunahara RK, Traynor JR, Neubig RR. Journal: Mol Pharmacol; 2007 Jan; 71(1):169-75. PubMed ID: 17012620. Abstract: Regulators of G-protein signaling (RGS) proteins are important components of signal transduction pathways initiated through G-protein-coupled receptors (GPCRs). RGS proteins accelerate the intrinsic GTPase activity of G-protein alpha-subunits (Galpha) and thus shorten the time course and reduce the magnitude of G-protein alpha- and betagamma-subunit signaling. Inhibiting RGS action has been proposed as a means to enhance the activity and specificity of GPCR agonist drugs, but pharmacological targeting of protein-protein interactions has typically been difficult. The aim of this project was to identify inhibitors of RGS4. Using a Luminex 96-well plate bead analyzer and a novel flow-cytometric protein interaction assay to assess Galpha-RGS interactions in a high-throughput screen, we identified the first small-molecule inhibitor of an RGS protein. Of 3028 compounds screened, 1, methyl N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986), inhibited RGS4/Galpha(o) binding with 3 to 5 muM potency. It binds to RGS4, inhibits RGS4 stimulation of Galpha(o) GTPase activity in vitro, and prevents RGS4 regulation of mu-opioid-inhibited adenylyl cyclase activity in permeabilized cells. Furthermore, CCG-4986 is selective for RGS4 and does not inhibit RGS8. Thus, we demonstrate the feasibility of targeting RGS/Galpha protein-protein interactions with small molecules as a novel means to modulate GPCR-mediated signaling processes.[Abstract] [Full Text] [Related] [New Search]