These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy.
    Author: Shanmugalingam S, Thornton JS, Iwata O, Bainbridge A, O'Brien FE, Priest AN, Ordidge RJ, Cady EB, Wyatt JS, Robertson NJ.
    Journal: Pediatrics; 2006 Oct; 118(4):1467-77. PubMed ID: 17015537.
    Abstract:
    OBJECTIVE: We sought to compare the prognostic utilities of early MRI spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. METHODS: Twenty-one term infants with neonatal encephalopathy were studied at a mean age of 3.1 days (range: 1-5). Basal ganglia, thalamic and frontal, parietal, and occipital white matter spin-spin relaxation times were determined from images with echo times of 25 and 200 milliseconds. Metabolite ratios were determined from an 8-mL thalamic-region magnetic resonance spectroscopy voxel (1H point-resolved spectroscopy; echo time 270 milliseconds). Outcomes were assigned at age 1 year as follows: (1) normal, (2) moderate (neuromotor signs or Griffiths developmental quotient of 75-84), (3) severe (functional neuromotor deficit or developmental quotient <75 or died). Predictive efficacies for differentiation between normal and adverse (combined moderate and severe) outcomes were compared by receiver operating characteristic curve analysis and logistic regression. RESULTS: Thalamic and basal ganglia spin-spin relaxation times correlated positively with outcome and predicted adversity. Although thalamic and basal ganglia spin-spin relaxation times were prognostic of adversity, magnetic resonance spectroscopy metabolite ratios were better predictors, and, of these, lactate/N-acetylaspartate was most accurate. CONCLUSIONS: Deep gray matter spin-spin relaxation time was increased in the first few days after birth in infants with an adverse outcome. Proton magnetic resonance spectroscopy was more prognostic than spin-spin relaxation time, with lactate/N-acetylaspartate the best measure. Nevertheless, both techniques were useful for early prognosis, and the potential superior spatial resolution of spin-spin relaxometry may define better the precise anatomic pattern of injury in the early days after birth.
    [Abstract] [Full Text] [Related] [New Search]