These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: STAT1-independent inhibition of cyclooxygenase-2 expression by IFNgamma; a common pathway of IFNgamma-mediated gene repression but not gene activation. Author: Klampfer L, Huang J, Kaler P, Sasazuki T, Shirasawa S, Augenlicht L. Journal: Oncogene; 2007 Mar 29; 26(14):2071-81. PubMed ID: 17016440. Abstract: Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of prostaglandins, promotes the development of colorectal cancer, and is a key molecular target of non-steroidal anti-inflammatory drugs, compounds that reduce the relative risk of developing colon cancer. In this study, we showed that interferon gamma (IFNgamma) inhibits the expression of COX-2 protein in intestinal epithelial cells (IECs) through a pathway that requires Janus-activated kinase (JAK) activity. In contrast, we demonstrated that transcriptional inhibition of COX-2 by IFNbeta or IFNgamma occurs in cells with silenced signal transducer and activator of transcription 1 (STAT1) expression and that IFNs retained the ability to inhibit COX-2 transcription in cells with activated RasV12, in which IFNgamma failed to induce STAT1. Thus, unlike the activity of JAK, STAT1 is not required for the inhibition of COX-2 expression by IFNgamma. In contrast to COX-2, the activation of genes in response to IFNgamma, such as interferon regulatory factor-1, was severely impaired by both STAT1 silencing and by constitutive Ras signaling. To determine whether there is a general differential requirement for STAT1 in gene activation and gene repression in response to IFNgamma in intestinal cells, we performed genome-wide analysis of IFNgamma target genes in an IEC line in which STAT1 expression was silenced by small interfering RNA. The results confirmed that the activation of the majority of genes by IFNgamma required STAT1. In contrast, the repression of several genes, as we showed for COX-2 specifically, was largely unaffected in cells with silenced STAT1. Our results therefore demonstrate that in general gene activation by IFNgamma is more sensitive to STAT1 deficiency than gene repression, and suggest that IFNgamma activates and represses gene expression via distinct pathways that can be distinguished, at least in part, by their requirement for STAT1.[Abstract] [Full Text] [Related] [New Search]