These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative enantioseparation of seven triazole fungicides on (S,S)-Whelk O1 and four different cellulose derivative columns. Author: Pan CX, Shen BC, Xu BJ, Chen JJ, Xu XZ. Journal: J Sep Sci; 2006 Aug; 29(13):2004-11. PubMed ID: 17017013. Abstract: The comparative enantioseparation of seven chiral triazole fungicides on a Pirkle type (S,S)-Whelk O1 chiral column and four different cellulose derivative columns, namely cellulose tribenzoate (CTB), cellulose tris(4-methylbenzoate) (CTMB), cellulose triphenylcarbamate (CTPC), and cellulose tris(3,5-dimethylphenyl carbamate) (CDMPC), in normal phase mode is described. The seven triazole fungicides investigated were tebuconazole, hexaconazole, myclobutanil, diniconazole, uniconazole, paclobutrazol, and triadimenol. The chiral separation of each solute was investigated with ethanol, n-propanol, iso-propanol, and n-butanol, respectively, as polar modifier in the hexane mobile phase. The results revealed that (S,S)-Whelk O1 was less than universal and only hexaconazole and triadimenol underwent enantioseparation. Among the self-prepared cellulose derivative columns used, the enantiomeric resolution capacities for the studied analytes generally decreased in the order CDMPC > CTPC > CTMB > CTB. The best enantioseparation of the analytes was mostly obtained on CDMPC and none of them were enantioseparated on CTB. The chiral recognition mechanisms between the analytes and the chiral selectors are discussed.[Abstract] [Full Text] [Related] [New Search]