These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania. Author: Holzmuller P, Bras-Gonçalves R, Lemesre JL. Journal: Parasitology; 2006; 132 Suppl():S19-32. PubMed ID: 17018162. Abstract: Nitric oxide (NO) has been demonstrated to be the principal effector molecule mediating intracellular killing of Leishmania, both in vitro and in vivo. We investigated the type of cell death process induced by NO for the intracellular amastigote stage of the protozoa Leishmania. Specific detection methods revealed a rapid and extensive cell death with morphological features of apoptosis in axenic amastigotes exposed to NO donors, in intracellular amastigotes inside in vitro - activated mouse macrophages and also in activated macrophages of regressive lesions in a leishmaniasis-resistant mouse model. We extended our investigations to the dog, a natural host-reservoir of Leishmania parasites, by demonstrating that co-incubation of infected macrophages with autologous lymphocytes derived from dogs immunised with purified excreted-secreted antigens of Leishmania resulted in a significant NO-mediated apoptotic cell death of intracellular amastigotes. From the biochemical point of view, NO-mediated Leishmania amastigotes apoptosis did not seem to be controlled by caspase activity as indicated by the lack of effect of cell permeable inhibitors of caspases and cysteine proteases, in contrast to specific proteasome inhibitors, such as lactacystin or calpain inhibitor I. Moreover, addition of the products of two NO molecular targets, cis-aconitase and glyceraldehyde-3-phosphate dehydrogenase, also had an inhibitory effect on the cell death induced by NO. Interestingly, activities of these two enzymes plus 6-phosphogluconate dehydrogenase, parasitic enzymes involved in both glycolysis and respiration processes, are overexpressed in amastigotes selected for their NO resistance. This review focuses on cell death of the intracellular stage of the pathogen Leishmania induced by nitrogen oxides and gives particular attention to the biochemical pathways and the molecular targets potentially involved. Questions about the role of Leishmania amastigotes NO-mediated apoptosis in the overall infection process are raised and discussed.[Abstract] [Full Text] [Related] [New Search]