These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The presence of a ferrocenyl unit on an estrogenic molecule is not always sufficient to generate in vitro cytotoxicity.
    Author: Vessières A, Spera D, Top S, Misterkiewicz B, Heldt JM, Hillard E, Huché M, Plamont MA, Napolitano E, Fiaschi R, Jaouen G.
    Journal: ChemMedChem; 2006 Nov; 1(11):1275-81. PubMed ID: 17022106.
    Abstract:
    We recently reported the dual (antihormonal and cytotoxic) functionality of ferrocifens, which are organometallic complexes derived from hydroxytamoxifen, the standard molecule in the treatment of hormone-dependent breast cancers. To test the hypothesis that the presence of a ferrocenyl substituent on molecules with an affinity for the estrogen receptor is sufficient to give them cytotoxic properties in vitro, we prepared complexes derived from estradiol with a ferrocenyl substituent at positions 7alpha and 17alpha. The complexes thus obtained retain a satisfactory level of affinity for the estrogen receptor (RBA values higher than 12 %). At low concentrations (0.1-1 microM) the complexes show an estrogenic effect in vitro equivalent to that of estradiol on hormone-dependent (MCF-7) breast cancer cells, and no cytotoxic effect on hormone-independent (MDA-MB-231) breast cancer cells. At high concentrations (up to 50 microM) the 17alpha-ethynylferrocenyl estradiol and 7alpha-ferrocenylmethylthio estradiol become cytotoxic (IC(50)=13.2 microM and 18.8 microM, respectively) while the 17alpha-ferrocenylestradiol remains non toxic. The low toxicity of these compounds support our hypothesis that electronic communication between the ferrocenyl and phenol moieties in the hydroxyferrocifens series is a key parameter in the generation of cytotoxic effects at submicromolar concentrations.
    [Abstract] [Full Text] [Related] [New Search]