These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma.
    Author: Yan Y, Dalmasso G, Sitaraman S, Merlin D.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G535-45. PubMed ID: 17023546.
    Abstract:
    Growing evidence that epithelial CD98 plays an important role in intestinal inflammation focused our interest to investigate the transcriptional regulation of CD98. Our mouse-based in vivo and in vitro experiments revealed that epithelial colonic CD98 mRNA expression was transcriptionally increased in intestinal inflammation. We then isolated and characterized a 5'-flanking fragment containing the promoter region required for CD98 gene transcription. Primer extension and rapid amplification of 5'-cDNA ends were used to map a transcriptional initiation site 129 bp upstream from the translational start codon (ATG). Direct sequencing of the 5'-flanking region revealed the presence of four GC-rich stimulating protein (Sp)1 binding domains, one NF-kappaB binding domain, and no TATA box. Binding of Sp1 [Sp1(-874), SP1(-386), Sp1(-187), and Sp1(-177)] and NF-kappaB [NF-kappaB(-213)] to the promoter was confirmed by EMSA and supershift assays. Furthermore, chromatin immunoprecipitation experiments showed the in vivo DNA-Sp1 and DNA-NF-kappaB interactions under basal and IFN-gamma-stimulated conditions. Reporter genes driven by serially truncated and site-mutated CD98 promoters were used to examine basal and IFN-gamma-responsive transcription in transiently transfected Caco2-BBE cells. Our results revealed that Sp1(-187), Sp1(-177), and the NF-kappaB binding site were essential for basal and IFN-gamma-stimulated CD98 promoter activities, whereas Sp1(-874) and Sp1(-386) were not. The results from additional site-mutated CD98 promoters suggested that Sp1(-187), Sp1(-177), and the NF-kappaB site may cooperate in mediating basal and IFN-gamma-stimulated CD98 promoter activities. Finally, we demonstrated that a reduction of Sp1 or NF-kappaB expression reduced CD98 protein expression in unstimulated and IFN-gamma-stimulated Caco2-BBE cells. Collectively, these findings indicate that the Sp1 and NF-kappaB transcription factors are likely to play a significant role in IFN-gamma-mediated transcriptional regulation of CD98 in the intestinal epithelium, providing new insights into the regulation of CD98 expression in intestinal inflammation.
    [Abstract] [Full Text] [Related] [New Search]