These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: emb-4 is a conserved gene required for efficient germline-specific chromatin remodeling during Caenorhabditis elegans embryogenesis.
    Author: Checchi PM, Kelly WG.
    Journal: Genetics; 2006 Dec; 174(4):1895-906. PubMed ID: 17028322.
    Abstract:
    In C. elegans, germline blastomeres are initially kept transcriptionally quiescent by the maternally loaded CCCH zinc-finger protein PIE-1. PIE-1 disappears upon the birth of the primordial germ cells Z2 and Z3, yet these cells appear to remain quiescent. We have previously demonstrated that there is a chromatin-based repression that succeeds PIE-1 degradation. The chromatin in Z2/Z3 loses certain histone modifications, including histone H3 lysine 4 dimethylation (H3K4me2), a conserved marker for transcriptionally competent chromatin. We find that mutations in the maternal-effect gene emb-4 cause defects in both PIE-1 degradation and germline-specific chromatin remodeling. emb-4 encodes a highly conserved protein with orthologs in fly, mouse, and human and has a subtle role in Notch signaling. The embryonic phenotype of emb-4 is consistent with a defect in the efficient and timely activation of developmental programs, including germline chromatin remodeling. We also find that, as in early somatic blastomeres, the degradation of PIE-1 in Z2/Z3 is facilitated by zinc-finger-interacting protein ZIF-1, and in the absence of either zif-1 or emb-4, PIE-1 is abnormally retained in Z2/Z3.
    [Abstract] [Full Text] [Related] [New Search]