These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, structure, and photophysical properties of luminescent platinum(II) complexes containing cyclometalated 4-styryl-functionalized 2-phenylpyridine ligands. Author: Yin B, Niemeyer F, Williams JA, Jiang J, Boucekkine A, Toupet L, Le Bozec H, Guerchais V. Journal: Inorg Chem; 2006 Oct 16; 45(21):8584-96. PubMed ID: 17029369. Abstract: A series of new luminescent cyclometalated platinum(II) complexes functionalized with various substituted styryl groups on the cyclometallating ligand [Pt(C/\N-ppy-4-styryl-R)(O/\O-(O)CCR'CHCR'C(O))] (ppy-4-styryl-R = E-4(4-(R)styryl-2-phenylpyridine) (3, R' = Me (acac); 4, R' = (t)Bu (dpm); R = H, OMe, NEt2, NO2) have been prepared. All complexes undergo an E-Z photoisomerization process in CH2Cl2 solution under sunlight, as monitored by 1H NMR. The solid-state structures of 3-OMe, 3-NEt2, 3-NO2, and 4-OMe have been determined by X-ray diffraction studies and compare well with optimized geometries obtained by density functional theory (DFT) calculations. The orbital pictures of 3-H, 3-OMe, and 3-NO 2 are very similar, the highest occupied molecular orbital (HOMO) being highly Pt(5d) metal-based. For 3-NMe2, an additional contribution from the amino-styryl fragment leads to a decreased metal parentage of the HOMO, suggesting a predominantly ILCT character transition. Complexes 3-H, 3-OMe, and 3-NO2 show a low-energy band (350-400 nm) assigned to predominantly charge-transfer transitions. The amino derivative 3-NEt2 displays a very strong absorption band at 432 nm, tentatively assigned to a mixture of ILCT (Et2N --> CH=CH) and metal-to-ligand charge-transfer (MLCT) (dpi(Pt) --> pi) transitions. Complexes 3 are weakly luminescent in CH2Cl2 solution at room temperature; the low intensity may be due to a competitive quenching through the E-Z photoisomerization process. All complexes exhibit similar structured emission bands under these conditions (around 520 nm), independent of the nature of the styryl-R group. In a frozen EPA glass (77 K), the spectrum of the representative complex 3-H exhibits two sets of vibronically structured bands (460-560, 570-800 nm; lambda(max) = 596 nm), due to the presence of two emitting species, the E and Z isomers, which have significantly different triplet excited-state energies. The other three complexes show similar behavior to 3-H at 77 K, but the lower-energy emission bands are progressively red-shifted in the order H < OMe < NO2 < NEt2 (e.g., for 3-NEt2, lambda(max)(em) = 658 nm; tau = 26 micros). The very large red-shift compared to related unsubstituted complexes (e.g., to [Pt(C/\N-ppy)(O/\O-acac)]) is the result of the extension of the pi-conjugated system and the electronic effects of substituent R.[Abstract] [Full Text] [Related] [New Search]