These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An empirical approach to the bond additivity model in quantitative interpretation of sum frequency generation vibrational spectra. Author: Wu H, Zhang WK, Gan W, Cui ZF, Wang HF. Journal: J Chem Phys; 2006 Oct 07; 125(13):133203. PubMed ID: 17029450. Abstract: Knowledge of the ratios between different polarizability betai'j'k' tensor elements of a chemical group in a molecule is crucial for quantitative interpretation and polarization analysis of its sum frequency generation vibrational spectroscopy (SFG-VS) spectrum at interface. The bond additivity model (BAM) or the hyperpolarizability derivative model along with experimentally obtained Raman depolarization ratios has been widely used to obtain such tensor ratios for the CH3, CH2, and CH groups. Successfully, such treatment can quantitatively reproduce the intensity polarization dependence in SFG-VS spectra for the symmetric (SS) and asymmetric (AS) stretching modes of CH3 and CH2 groups, respectively. However, the relative intensities between the SS and AS modes usually do not agree with each other within this model even for some of the simplest molecular systems, such as the air/methanol interface. This fact certainly has cast uncertainties on the effectiveness and conclusions based on the BAM. One of such examples is that the AS mode of CH3 group has never been observed in SFG-VS spectra from the air/methanol interface, while this AS mode is usually very strong for SFG-VS spectra from the air/ethanol interface, other short chain alcohol, as well as long chain surfactants. In order to answer these questions, an empirical approach from known Raman and IR spectra is used to make corrections to the BAM. With the corrected ratios between the betai'j'k' tensor elements of the SS and AS modes, all features in the SFG-VS spectra of the air/methanol and air/ethanol interfaces can be quantitatively interpreted. This empirical approach not only provides new understandings of the effectiveness and limitations of the bond additivity model but also provides a practical way for its application in SFG-VS studies of molecular interfaces.[Abstract] [Full Text] [Related] [New Search]