These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia.
    Author: Gelin J, Moldawer LL, Lönnroth C, Sherry B, Chizzonite R, Lundholm K.
    Journal: Cancer Res; 1991 Jan 01; 51(1):415-21. PubMed ID: 1703040.
    Abstract:
    The aim of this study was to evaluate to what extent tumor necrosis factor alpha (TNF-alpha) and interleukin 1 may explain the development of experimental cancer cachexia. For this purpose, C57BL/6J mice bearing a transplantable low differentiated rapidly growing tumor were passively immunized every other day with rabbit or rat neutralizing immunoglobulins against either TNF-alpha (anti-TNF) or against an interleukin 1 receptor (anti-IL-1r). Anti-IL-1r in itself had no agonistic effect to the type I, T-cell/fibroblast IL-receptor. Tumor-bearing mice receiving either preimmune antiserum or nonimmune rat hybridoma IgG served as controls. Anti-TNF and anti-IL-1r inhibited tumor growth significantly, as measured by a lower wet and dry tumor weight at the end of 11 days of antiserum treatment (P less than 0.05). The acute phase response in tumor-bearing animals, measured as an increase in liver weight, hepatic RNA content, and increases in plasma concentrations of circulating IL-6, serum amyloid P, transferrin, complement (C3), and a decrease in plasma albumin, were unaffected by the specific antiserum treatments. Food intake, which declined significantly in pre/nonimmune injected tumor-bearing controls, was significantly improved in tumor-bearing animals immunized against TNF-alpha or the IL-1r. Whole body lipid content showed a trend to improvement in specifically immunized animals (P less than 0.07). The effects on whole body fat-free dry weight were insignificant, although numerically higher in specifically immunized tumor-bearing animals. The combination of anti-TNF and anti-IL-1r antiserum had no additive effects compared to single antiserum treatment suggesting that the two antibody treatments acted through a common mechanism. Cultured tumor cells, established from growing tumors, were sensitive to anti-TNF and anti-IL-1r, which both reduced tumor growth in vitro. This inhibitory effect by the antiserum could in part be reversed by the addition of recombinant IL-1 alpha and TNF alpha. We conclude that both TNF and IL-1 are involved in tumor growth and thus the progression of cancer cachexia. It seems as if the role of TNF and IL-1 was to promote tumor growth rather than restrict tumor growth in the present model. In this sense both TNF and IL-1 may act as tumor growth factors.
    [Abstract] [Full Text] [Related] [New Search]