These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle. Author: Grunwald EW, Richards MP. Journal: J Agric Food Chem; 2006 Oct 18; 54(21):8271-80. PubMed ID: 17032039. Abstract: The hemoglobin variant rHb 0.1, which possesses a decreased ability to form subunits, stimulated lipid oxidation in washed fish muscle less effectively as compared to wild-type hemoglobin (rHb 0.0). This could be due to the lower hemin affinity and more rapid autoxidation rate of subunits as compared to tetramers. To differentiate between hemin affinity and autoxidation effects, ferrous V68T Mb was compared to ferrous wild-type myoglobin (WT Mb). WT Mb has a more rapid hemin loss rate (25-fold) than does V68T, while V68T autoxidized more rapidly than did WT Mb (60-fold). Ferrous WT Mb promoted TBARS and lipid peroxide formation more rapidly than did ferrous V68T (p < 0.01). This indicated hemin loss rate was more critical in determining onset of lipid oxidation as compared to autoxidation rate. Hemin alone was capable of stimulating lipid oxidation. Albumin enhanced the ability of hemin to promote lipid oxidation. MetMb promoted lipid oxidation more effectively than did ferrous Mb, which could be due to the lower hemin affinity of metMb as compared to that of ferrous Mb. EDTA, an iron chelator, had no effect on the rate or extent of lipid oxidation mediated by Mb in the cooked system. Variants with a 975-fold range of hemin affinities promoted lipid oxidation with equivalent efficacy in cooked washed cod contrary to results in uncooked washed cod. The cooking temperatures apparently denature the globin and release hemin reactant to such an extent that the impact of hemin affinity on lipid oxidation observed in the raw state is negated in the cooked state. These studies collectively suggest released hemin is of primary importance in promoting lipid oxidation in raw and cooked washed fish muscle.[Abstract] [Full Text] [Related] [New Search]