These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Ca2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant.
    Author: Kerboeuf D, Cohen J.
    Journal: J Cell Biol; 1990 Dec; 111(6 Pt 1):2527-35. PubMed ID: 1703537.
    Abstract:
    A Paramecium possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 microM aminoethyl dextran (AED; Plattner, H., H. Matt, H.Kersken, B. Haake, and R. Stürz, 1984. Exp. Cell Res. 151:6-13) as a vital secretagogue, we analyzed the movements of calcium (Ca2+) during the discharge of trichocysts. We showed that (a) external Ca2+, at least at 3 X 10(-7) M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca2+ as measured from 45Ca uptake is induced by AED; (c) this influx is independent of the well-characterized voltage-operated Ca2+ channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, nd12. We propose that the Ca2+ influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca2+ channel or the activation of other Ca2+ transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca2+ concentration would in turn induce membrane fusion. The mutation nd12 would affect a gene product involved in the control of plasma membrane permeability to Ca2+, specifically related to membrane fusion.
    [Abstract] [Full Text] [Related] [New Search]