These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inchinkoto, a herbal medicine, and its ingredients dually exert Mrp2/MRP2-mediated choleresis and Nrf2-mediated antioxidative action in rat livers.
    Author: Okada K, Shoda J, Kano M, Suzuki S, Ohtake N, Yamamoto M, Takahashi H, Utsunomiya H, Oda K, Sato K, Watanabe A, Ishii T, Itoh K, Yamamoto M, Yokoi T, Yoshizato K, Sugiyama Y, Suzuki H.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2007 May; 292(5):G1450-63. PubMed ID: 17038627.
    Abstract:
    Inchinkoto (ICKT), a herbal medicine, has been recognized in Japan and China as a "magic bullet" for jaundice. To explore potent therapeutic agents for cholestasis, the effects of ICKT or its ingredients on multidrug resistance-associated protein 2 (Mrp2/ MRP2)-mediated choleretic activity, as well as on antioxidative action, were investigated using rats and chimeric mice with livers that were almost completely repopulated with human hepatocytes. Biliary excretion of Mrp2 substrates and the protein mass, subcellular localization, and mRNA level of Mrp2 were assessed in rats after 1-wk oral administration of ICKT or genipin, a major ingredient of ICKT. Administration of ICKT or genipin to rats for 7 days increased bile flow and biliary excretion of bilirubin conjugates. Mrp2 protein and mRNA levels and Mrp2 membrane densities in the bile canaliculi and renal proximal tubules were significantly increased in ICKT- or genipin-treated rat livers and kidneys. ICKT and genipin, thereby, accelerated the disposal of intravenously infused bilirubin. The treatment also increased hepatic levels of heme oxygenase-1 and GSH by a nuclear factor-E2-related factor (Nrf2)-dependent mechanism. Similar effects of ICKT on MRP2 expression levels were observed in humanized livers of chimeric mice. In conclusion, these findings provide the rationale for therapeutic options of ICKT and its ingredients that should potentiate bilirubin disposal in vivo by enhancing Mrp2/MRP2-mediated secretory capacities in both livers and kidneys as well as Nrf2-mediated antioxidative actions in the treatment of cholestatic liver diseases associated with jaundice.
    [Abstract] [Full Text] [Related] [New Search]