These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of the nest environment on bone mineral content in hatchling painted turtles (Chrysemys picta). Author: Sternadel LL, Packard GC, Packard MJ. Journal: Physiol Biochem Zool; 2006; 79(6):1069-81. PubMed ID: 17041872. Abstract: We performed an experiment at a field site in north-central Nebraska to assess the role of the nest environment in inducing variation in bone mineral content in hatchling painted turtles Chrysemys picta (Schneider 1783). The contents of several newly constructed nests were manipulated by reciprocal transplant, after which the eggs were allowed to incubate for 8 wk under natural conditions. The nests were then excavated, and the eggs were brought into the laboratory to complete incubation and hatch under standard conditions of temperature and moisture. The hatchlings were killed, and their carcasses and residual yolks were analyzed separately for calcium and phosphorus. More of the random variation in carcass calcium and phosphorus was related to the nest in which eggs incubated (37% and 42%, respectively) than was associated with the clutch of origin (21% and 37%). Moreover, hatchlings from some nests contained substantially more calcium and phosphorus than did hatchlings from other nests, both in terms of the absolute amounts of the elements in their carcasses (pointing to variation in body size) and in terms of the concentrations of those elements (pointing to variation in bone density). The amounts of calcium and phosphorus in carcasses of hatchlings were positively correlated with changes in mass of their eggs during the 8 wk that the eggs incubated in nests in the field, thereby indicating that the influence of the nest environment on developing embryos probably was mediated by water exchanges experienced by the eggs. These findings indicate that developmental plasticity underlies a major fraction of the variation in mineral content of hatchling painted turtles emerging from nests in the field. Phenotypic variation attributable to plasticity consequently needs to be addressed in models for life-history evolution of painted turtles and other chelonians producing eggs with soft, flexible shells.[Abstract] [Full Text] [Related] [New Search]