These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Jet cooled spectroscopy of H2DO+: Barrier heights and isotope-dependent tunneling dynamics from H3O+ to D3O+.
    Author: Dong F, Nesbitt DJ.
    Journal: J Chem Phys; 2006 Oct 14; 125(14):144311. PubMed ID: 17042594.
    Abstract:
    The first high resolution spectroscopic data for jet cooled H2DO+ are reported, specifically via infrared laser direct absorption in the OH stretching region with a slit supersonic jet discharge source. Transitions sampling upper (0-) and lower (0+) tunneling states for both symmetric (nu1+ <-- 0+, nu1- <-- 0-, and nu1- <-- 0+) and antisymmetric (nu3+ <-- 0+ and nu3- <-- 0-) OH stretching bands are observed, where +/- refers to wave function reflection symmetry with respect to the planar umbrella mode transition state. The spectra can be well fitted to a Watson asymmetric top Hamiltonian, revealing band origins and rotational constants for benchmark comparison with high-level ab initio theory. Of particular importance are detection and assignment of the relatively weak band (nu1- <-- 0+) that crosses the inversion tunneling gap, which is optically forbidden in H3O+ or D3O+, but weakly allowed in H2DO+ by lowering of the tunneling transition state symmetry from D(3h) to C(2v). In conjunction with other H2DO+ bands, this permits determination of the tunneling splittings to within spectroscopic precision for each of the ground [40.518(10) cm(-1)], nu1 = 1 [32.666(6) cm(-1)], and nu3 = 1 [25.399(11) cm(-1)] states. A one-dimensional zero-point energy corrected potential along the tunneling coordinate is constructed from high-level ab initio CCSD(T) calculations (AVnZ, n = 3,4,5) and extrapolated to the complete basis set limit to extract tunneling splittings via a vibrationally adiabatic treatment. Perturbative scaling of the potential to match splittings for all four isotopomers permits an experimental estimate of DeltaV0 = 652.9(6) cm(-1) for the tunneling barrier, in good agreement with full six-dimensional ab initio results of Rajamaki, Miani, and Halonen (RMH) [J. Chem. Phys. 118, 10929 (2003)]. (DeltaV0 (RMH) = 650 cm(-1)). The 30%-50% decrease in tunneling splitting observed upon nu1 and nu3 vibrational excitations arises from an increase in OH stretch frequencies at the planar transition state, highlighting the transition between sp2 and sp3 hybridizations of the OHD bonds as a function of inversion bending angle.
    [Abstract] [Full Text] [Related] [New Search]