These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improvement on macroscopic compressibility approximation and beyond.
    Author: Zhou S.
    Journal: J Chem Phys; 2006 Oct 14; 125(14):144518. PubMed ID: 17042620.
    Abstract:
    A numerical procedure is proposed to extend the thermodynamic perturbation expansion (TPE) to a higher order. It is shown that the present second order term is superior to that due to a macroscopic compressibility approximation (MCA), a local compressibility approximation, and a superposition approximation by Barker and Henderson [Rev. Mod. Phys. 48, 587 (1976)]. Extensive model calculation and comparison with simulation data available in literature and supplied in the present report indicate that the present third order TPE is superior to a previous second order TPE based on the MCA, two previous perturbation theories, which are respectively based on an analytical mean spherical approximation for an Ornstein-Zernike equation, and an assumed explicit functional form for the Laplace transform of radial distribution function multiplied by radial distance, and a recent generalized van der Waals theory. The present critical temperature for a hard core attractive Yukawa fluid of varying range is in very good agreement with that due to a hierarchical reference theory. The present third order TPE is computationally far more modest than the self-consistent integral equation theory, and therefore is a viable alternative to use of the latter.
    [Abstract] [Full Text] [Related] [New Search]