These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of fluoxetine or D-fenfluramine on serotonin release from, and levels in, rat frontal cortex. Author: Sarkissian CF, Wurtman RJ, Morse AN, Gleason R. Journal: Brain Res; 1990 Oct 08; 529(1-2):294-301. PubMed ID: 1704283. Abstract: Using in vivo microdialysis of frontal cortex in anesthetized rats, as well as analysis of frontal cortex homogenates, we examined the effects of chronic administration of fluoxetine (30 mg/kg, i.p.) or D-fenfluramine (7.5 mg/kg, i.p.), administered daily for 3 days, on serotonin and 5-HIAA levels a day later. Measurements were also taken after 3-, 7- , and 21-day recovery periods. Neither chronic fluoxetine nor D-fenfluramine changed basal serotonin release. Both treatments, however, transiently decreased the release of serotonin evoked by an acute dose of D-fenfluramine (10 mg/kg, i.p.). Release initially was completely suppressed in fluoxetine-pretreated animals but returned to normal by the 21st day of washout; following D-fenfluramine pretreatment, normal release was attained by the 7th day of washout. Both fluoxetine and D-fenfluramine transiently decreased 5-HIAA levels in the dialysates and tissues. Both drugs also caused prolonged changes in frontal cortex serotonin levels, D-fenfluramine lowering them but fluoxetine elevating them. These results suggest that, at comparable dosage levels relative to their ED50s, fluoxetine and D-fenfluramine cause comparable reversible effects on brain serotonin release. The drugs also cause prolonged but opposite changes in brain serotonin levels, probably reflecting differences in the extents to which they or their principal metabolites release serotonin and block its reuptake.[Abstract] [Full Text] [Related] [New Search]