These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosigma akashiwo (Raphidophyceae). Author: Gao K, Guan W, Helbling EW. Journal: J Photochem Photobiol B; 2007 Feb 01; 86(2):140-8. PubMed ID: 17045485. Abstract: In order to assess the short- and long-term impacts of UV radiation (UVR, 280-400nm) on the red tide alga, Heterosigma akashiwo, we exposed the cells to three different solar radiation treatments (PAB: 280-700nm, PA: 320-700nm, P: 400-700nm) under both solar and artificial radiation. A significant decrease in the effective quantum yield (Y) during high irradiance periods (i.e., local noon) was observed, but the cells partially recovered during the evening hours. Exposure to high irradiances for 15, 30, and 60min under a solar simulator followed by the recovery (8h) under dark, 9 and 100micromolphotonsm(-2)s(-1) of PAR, highlighted the importance of the irradiance level during the recovery period. Regardless the radiation treatments, the highest recovery (both in rate and total Y) was found at a PAR irradiance of 9micromolphotonsm(-2)s(-1), while the lowest was observed at 100micromolphotonsm(-2)s(-1). In all experiments, PAR was responsible for most of the observed inhibition; nevertheless, the cells exposed only to PAR had the highest recovery in any condition, as compared to the other radiation treatments. In long-term experiments (10 days) using semi-continuous cultures, there was a significant increase of UV-absorbing compounds (UV(abc)) per cell from 1.2 to >4x10(-6)microgUV(abc)cell(-1) during the first 3-5 days of exposure to solar radiation. The highest concentration of UV(abc) was found in samples exposed in the PAB as compared to PA and P treatments. Growth rates (mu) mimic the behavior of UV-absorbing compounds, and during the first 5 days mu increased from <0.2 to ca. 0.8, and stayed relatively constant at this value during the rest of the experiment. The inhibition of the Y decreased with increasing acclimation of cells. All our data indicates that H. akashiwo is a sensitive species, but was able acclimate relatively fast (3-5 days) synthesizing UV-absorbing compounds and thus reducing any impact either on photosystem II or on growth.[Abstract] [Full Text] [Related] [New Search]