These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment.
    Author: Lu Z, Tao Y, Zhou Z, Zhang J, Li C, Ou L, Zhao B.
    Journal: Free Radic Biol Med; 2006 Nov 15; 41(10):1590-605. PubMed ID: 17045927.
    Abstract:
    Photodynamic therapy (PDT) is a novel and promising cancer treatment which employs a combination of a photosensitizing chemical and visible light to induce apoptosis in cancer cells. Singlet oxygen has been recognized as the main origin of oxidative stress in PDT. However, the precise mechanism of PDT-induced apoptosis is not well characterized, especially the dualistic role of nitric oxide (NO). To dissect the apoptosis pathways triggered by PDT, the intracellular free radicals in MCF-7 cells were investigated by examining a novel photosensitizer 2-butylamino-2-demethoxyhypocrellin B (2-BA-2-DMHB)-mediated PDT. It was found that exposure of the cells to 2-BA-2-DMHB and irradiation resulted in a significant increase of intracellular ROS in minutes, and then followed by cytoplasmic free calcium enhancement, mitochondrial nitric oxide synthase (mtNOS) activation, cytochrome c release, and apoptotic death. Scavengers of singlet oxygen or NO could attenuate PDT-induced cell viability loss, nucleus morphology changes, cytochrome c release, mitochondria swelling, and apo-apoptosis gene p53 and p21 mRNA levels. The results suggested that both ROS and NO played important roles in the apoptosis-induced by PDT.
    [Abstract] [Full Text] [Related] [New Search]