These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of SPA-1 in phenotypes of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model.
    Author: Kometani K, Aoki M, Kawamata S, Shinozuka Y, Era T, Taniwaki M, Hattori M, Minato N.
    Journal: Cancer Res; 2006 Oct 15; 66(20):9967-76. PubMed ID: 17047059.
    Abstract:
    SPA-1 is a negative regulator of Rap1 signal in hematopoietic cells, and SPA-1-deficient mice develop myeloproliferative disorders (MPD) of long latency. In the present study, we showed that the MPDs in SPA-1(-/-) mice were associated with the increased hematopoietic stem cells expressing LFA-1 in bone marrow and their premature mobilization to spleen with extensive extramedullary hematopoiesis, resembling human chronic myelogenous leukemia (CML). We further showed that human BCR-ABL oncogene caused a partial down-regulation of endogenous SPA-1 gene expression in mouse hematopoietic progenitor cells (HPC) and immature hematopoietic cell lines. Although both BCR-ABL-transduced wild-type (wt) and SPA-1(-/-) HPC rapidly developed CML-like MPD when transferred to severe combined immunodeficient mice, the latter recipients showed significantly increased proportions of BCR-ABL(+) Lin(-) c-Kit(+) cells compared with the former ones. Serial transfer experiments revealed that spleen cells of secondary recipients of BCR-ABL(+) wt HPC failed to transfer MPD to tertiary recipients due to a progressive reduction of BCR-ABL(+) Lin(-) c-Kit(+) cells. In contrast, SPA-1(-/-) BCR-ABL(+) Lin(-) c-Kit(+) cells were sustained at high level in secondary recipients, and their spleen cells could transfer MPD to tertiary recipients, a part of which rapidly developed blast crisis. Present results suggest that endogenous SPA-1 plays a significant role in regulating expansion and/or survival of BCR-ABL(+) leukemic progenitors albeit partial repression by BCR-ABL and that Rap1 signal may represent a new molecular target for controlling leukemic progenitors in CML.
    [Abstract] [Full Text] [Related] [New Search]