These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Numerical simulations of pulsatile blood flow using a new constitutive model.
    Author: Fang J, Owens RG.
    Journal: Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282.
    Abstract:
    In the present paper we use a new constitutive equation for whole human blood [R.G. Owens, A new microstructure-based constitutive model for human blood, J. Non-Newtonian Fluid Mech. (2006), to appear] to investigate the steady, oscillatory and pulsatile flow of blood in a straight, rigid walled tube at modest Womersley numbers. Comparisons are made with the experimental results of Thurston [Elastic effects in pulsatile blood flow, Microvasc. Res. 9 (1975), 145-157] for the pressure drop per unit length against volume flow rate and oscillatory flow rate amplitude. Agreement in all cases is very good. In the presentation of the numerical and experimental results we discuss the microstructural changes in the blood that account for its rheological behaviour in this simple class of flows. In this context, the concept of an apparent complex viscosity proves to be useful.
    [Abstract] [Full Text] [Related] [New Search]