These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity.
    Author: El Hajj Dib I, Gallet M, Mentaverri R, Sévenet N, Brazier M, Kamel S.
    Journal: Eur J Pharmacol; 2006 Dec 03; 551(1-3):27-33. PubMed ID: 17049513.
    Abstract:
    Recent studies have reported that imatinib mesylate, a kinase inhibitor that targets the intracellular tyrosine kinase BCR-ABL and the platelet derived growth factor (PDGF) receptor, is an effective inhibitor of the macrophage colony stimulating factor (M-CSF) receptor, c-FMS. Given that M-CSF signalling through c-FMS plays an important role in osteoclast biology, we speculated that blocking such a pathway with imatinib may modulate osteoclast activity. Using a cell model of mature rabbit osteoclasts, we thus investigated the effect of imatinib on in vitro osteoclast apoptosis and bone resorbing activity. Our findings demonstrate that imatinib dose-dependently stimulates osteoclast apoptosis, a phenomenon which is blocked by the caspase I inhibitor Z-VAD-fmk. The ability of imatinib to enhance osteoclast cell death was accompanied by a dose-dependent inhibition of osteoclast bone resorbing activity. Imatinib was also found to inhibit M-CSF-induced osteoclast survival as well as M-CSF-induced osteoclast bone resorbing activity, but was without effect on interleukin 1alpha (IL-1alpha) and receptor activator of nuclear factor kappa B ligand (RANKL)-induced inhibition of osteoclasts apoptosis, further supporting the hypothesis that imatinib may affect mature osteoclasts through the inhibition of c-FMS. Taken together, these results suggest that imatinib could be of clinical value in treating diseases where bone destruction can occur due to excessive M-CSF production such as osteoporosis, inflammatory-and tumor-induced osteolysis.
    [Abstract] [Full Text] [Related] [New Search]