These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scuticociliate proteinases may modulate turbot immune response by inducing apoptosis in pronephric leucocytes. Author: Paramá A, Castro R, Lamas J, Sanmartín ML, Santamarina MT, Leiro J. Journal: Int J Parasitol; 2007 Jan; 37(1):87-95. PubMed ID: 17049529. Abstract: The role of proteinases of the histiophagous ciliate Philasterides dicentrarchi, purified by affinity chromatography in bacitracin-Sepharose, on apoptosis (programmed cell death) of turbot pronephric leucocytes (PL) was investigated. The results showed that more than 90% of proteinases purified by bacitracin-Sepharose were cysteine proteinases, which lacked significant caspase-3-like activity and generated three main gelatinolytic bands of molecular weights 36, 45 and 77 kDa as determined by gelatine-SDS-PAGE and immunoblot. Viability of PL cells after 24 h stimulation with P. dicentrarchi cysteine proteinases did not differ from that of non-stimulated cells. Apoptosis was confirmed by: (i) caspase activity, (ii) DNA fragmentation, and (iii) nucleus fragmentation. The caspase-3-like activity in PL incubated for 4h in the presence of 125, 250 and 500 microg/ml of proteinases increased in a dose-dependent fashion. The PL DNA was fragmented following 24-h exposure to P. dicentrarchi cysteine proteinases and characteristic DNA ladders consisting of multimers of approximately 180-200 pb were produced. Morphological changes, such as chromatin condensation and nucleus fragmentation, were observed under fluorescence microscopy after DAPI staining of the PL cells incubated with cysteine proteinase-incubated for 24 h. The results suggest that the pathogenic scuticociliate P. dicentrarchi may induce host leucocyte programmed cell death via the production of cysteine proteinases, as a mechanism of pathogenesis and evasion of the turbot innate immune response.[Abstract] [Full Text] [Related] [New Search]