These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resistin impairs basal and insulin-induced glycogen synthesis by different mechanisms.
    Author: Niederwanger A, Kranebitter M, Ciardi C, Tatarczyk T, Patsch JR, Pedrini MT.
    Journal: Mol Cell Endocrinol; 2007 Jan 15; 263(1-2):112-9. PubMed ID: 17049721.
    Abstract:
    In the present study, we investigated the mechanisms by which resistin (100 nM, 1 h) affects glycogen synthesis in L6 skeletal muscle cells. The activity of glycogen synthase, the major enzyme in glycogen synthesis, is determined by both its covalent phosphorylation and allostery through intracellular glucose-6-phosphate. Covalent phosphorylation of glycogen synthase was not altered by resistin and, accordingly, phosphorylation of GSK-3alpha/beta and Akt remained unchanged. The rate of glucose-6-phosphate formation, however, was decreased by resistin both in the absence and presence of insulin; in the absence of insulin, resistin decreased glucose-6-phosphate formation by reducing hexokinase type I activity without affecting glucose uptake; by contrast, in the presence of insulin, resistin decreased glucose-6-phosphate formation by reducing the Vmax of glucose uptake without changing hexokinase type I activity. In conclusion, short-term resistin incubation impairs glycogen synthesis by reducing the rate of glucose-6-phosphate formation involving, however, differential mechanisms in basal and insulin-stimulated states.
    [Abstract] [Full Text] [Related] [New Search]