These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversion of structure-activity relationships of antitumor platinum complexes by acetoxime but not hydroxylamine ligands.
    Author: Zorbas-Seifried S, Jakupec MA, Kukushkin NV, Groessl M, Hartinger CG, Semenova O, Zorbas H, Kukushkin VY, Keppler BK.
    Journal: Mol Pharmacol; 2007 Jan; 71(1):357-65. PubMed ID: 17050805.
    Abstract:
    The presence of cis-configured exchangeable ligands has long been considered a prerequisite for antitumor activity of platinum complexes, but over the past few years, several examples violating this structure-activity relationship have been recognized. We report here on studies with the geometric isomers of [PtCl2(acetoxime)2], cis-[dichlorobis(acetoxime)platinum(II)] [1 (cis)] and trans-[dichlorobis(acetoxime)platinum(II)] [2 (trans)], as well as those of [PtCl2(hydroxylamine)2], cis-[dichlorobis(hydroxylamine)platinum(II)] [3 (cis)] and trans-[dichlorobis(hydroxylamine)platinum(II)] [4 (trans)]. We found that 2 (trans)is 16 times more cytotoxic than 1 (cis) and as cytotoxic as cisplatin in cisplatin-sensitive ovarian carcinoma cells (CH1). Moreover, 2 (trans) is 15 times more cytotoxic than either cisplatin or 1 (cis) in intrinsically cisplatin-resistant colon carcinoma cells (SW480). Thus, compound 2 (trans) represents a novel type of active platinum(II) complexes of the trans geometry, whereas the hydroxylamine-containing complexes conform to the classic structure-activity relationships. The reactivity of the compounds toward dGMP and DNA and their capacity to alter the structure of double-stranded DNA and form interstrand cross-links were studied by capillary electrophoresis and gel electrophoresis. The slow binding of 2 (trans) to dGMP (tau(1/2) = 50 h versus 8.9 h in the case of cisplatin), the low reactivity toward DNA, the comparatively small impact on DNA secondary structure, and the lack of detectable interstrand cross-linking suggest a mode of action fundamentally different from that of cisplatin. Implications of our findings for the minimal structural requirements (e.g., planarity around the nitrogen donor atom and/or ramified aliphatic moiety attached to the latter) of active trans-configured platinum complexes are discussed.
    [Abstract] [Full Text] [Related] [New Search]