These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Upregulated liver conversion of alpha-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet.
    Author: Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport SI.
    Journal: J Lipid Res; 2007 Jan; 48(1):152-64. PubMed ID: 17050905.
    Abstract:
    We quantified incorporation rates of plasma-derived alpha-linolenic acid (alpha-LNA, 18:3n-3) into "stable" liver lipids and the conversion rate of alpha-LNA to docosahexaenoic acid (DHA, 22:6n-3) in male rats fed, after weaning, an n-3 PUFA-adequate diet (4.6% alpha-LNA, no DHA) or an n-3 PUFA-deficient diet (0.2% alpha-LNA, no DHA) for 15 weeks. Unanesthetized rats were infused intravenously with [1-14C]alpha-LNA, and arterial plasma was sampled until the liver was microwaved at 5 min. Unlabeled alpha-LNA and DHA concentrations in arterial plasma and liver were reduced >90% by deprivation, whereas unlabeled arachidonic acid (20:4n-6) and docosapentaenoic acid (22:5n-6) concentrations were increased. Deprivation did not change alpha-LNA incorporation coefficients into stable liver lipids but increased synthesis-incorporation coefficients of DHA from alpha-LNA by 6.6-, 8.4-, and 2.3-fold in triacylglycerol, phospholipid, and cholesteryl ester, respectively. Assuming that synthesized-incorporated DHA eventually would be secreted within lipoproteins, calculated liver DHA secretion rates equaled 2.19 and 0.82 micromol/day in the n-3 PUFA-adequate and -deprived rats, respectively. These rates exceed the published rates of brain DHA consumption by 6- and 10-fold, respectively, and should be sufficient to maintain normal and reduced brain DHA concentrations, respectively, in the two dietary conditions.
    [Abstract] [Full Text] [Related] [New Search]