These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acrylamide analog as a novel nitric oxide-independent soluble guanylyl cyclase activator.
    Author: Nakane M, Kolasa T, Chang R, Miller LN, Moreland RB, Brioni JD.
    Journal: J Pharmacol Sci; 2006 Oct; 102(2):231-8. PubMed ID: 17050951.
    Abstract:
    Soluble guanylyl cyclase (sGC) is a target enzyme for endogenous nitric oxide (NO), and it converts GTP to cyclic GMP (guanosine 3',5'-cyclic monophosphate) as part of a cascade that results in physiological processes such as smooth muscle relaxation, neurotransmission, and inhibition of platelet aggregation. Here we examine a representative of the novel class sCG activators, A-778935 ((+/-)-cis-3-[2-(2,2-dimethyl-propylsulfanyl)-pyridin-3-yl]-N-(3-hydroxy-cyclohexyl)-acrylamide). A-778935 activated sGC synergistically with sodium nitroprusside (SNP) over a wide range of concentration, inducing up to 420-fold activation. A specific inhibitor of sGC, ODQ (1H-[1,2,4]-oxadiazolo[4,3-alpha]quinoxalin-1-one), did not block basal sGC activity, but competitively inhibited the activation by A-778935. A-778935, with or without SNP, did not activate heme-deficient sGC, indicating that the activation of sGC by A-778935 is fully heme-dependent. A-778935 increased intracellular cGMP level dose-dependently in smooth muscle cells. In the presence of 1 microM SNP, a lower concentration of A-778935 increased cGMP than A-778935 alone, and the cGMP concentration reached the same level at 100 microM of A-778935. A-778935 relaxed cavernosum tissue strips in a dose-dependent manner; and in the presence of 1 microM SNP, A-778935 relaxed the strips more potently, shifting the dose-response curve to the left. This novel activator of sGC may have potential efficacy for the treatment of a variety of disorders associated with reduced NO signaling.
    [Abstract] [Full Text] [Related] [New Search]