These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of Gs activity by phorbol myristate acetate in rat hepatocytes.
    Author: Hernández-Sotomayor SM, Macías-Silva M, Malbon CC, García-Sáinz JA.
    Journal: Am J Physiol; 1991 Feb; 260(2 Pt 1):C259-65. PubMed ID: 1705098.
    Abstract:
    Activation of protein kinase C promotes heterologous desensitization of hepatic adenylate cyclase. The basis for this desensitization was explored by use of a strategy with several independent approaches. Although not influencing the amount of forskolin-stimulated adenylate cyclase activity (catalyst), treatment with phorbol 12-myristate 13-acetate (PMA) decreased adenylate cyclase activation in response to either sodium fluoride or guanylyl imidodiphosphate [Gpp(NH)p]. Adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in cholera toxin-treated hepatocytes and both the basal and GTP-stimulated adenylate cyclase activity of membranes from toxin-treated cells displayed a marked reduction in response to PMA. The ability of cholate extracts of hepatocyte membranes to reconstitute beta-adrenergic-stimulated adenylate cyclase activity of membrane of S49 mouse lymphoma cyc- cells was reduced by treatment with PMA. Cholera toxin-catalyzed labeling of Gs alpha-subunits was likewise diminished by phorbol ester treatment. Immunoblots of membranes from control or PMA-treated hepatocytes showed no difference in the amount of Gs alpha. Immunoprecipitation studies failed to detect phosphorylation of this G protein alpha-subunit. The data demonstrate that PMA induces an alteration in the functional status of Gs without altering the amount of this transmembrane signaling element. The alteration in Gs function may play a significant role in heterologous desensitization.
    [Abstract] [Full Text] [Related] [New Search]