These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GW406381, a novel COX-2 inhibitor, attenuates spontaneous ectopic discharge in sural nerves of rats following chronic constriction injury.
    Author: Zhao FY, Spanswick D, Martindale JC, Reeve AJ, Chessell IP.
    Journal: Pain; 2007 Mar; 128(1-2):78-87. PubMed ID: 17055166.
    Abstract:
    There are several lines of evidence to suggest that cyclooxygenase-2 (COX-2) plays an important role in the generation and maintenance of neuropathic pain states following peripheral nerve injury. However, COX-2 inhibitors are generally ineffective in reversing mechanical allodynia and hyperalgesia in models of neuropathic hypersensitivity. Here, we have investigated the effects of GW406381, a novel COX-2 inhibitor, on mechanical allodynia, hyperalgesia and generation of spontaneous ectopic discharge in rats following chronic constriction injury (CCI) of the sciatic nerve and compared it with rofecoxib. GW406381 (5mg/kg, 5 days of treatment) significantly reversed the CCI-induced decrease in paw withdrawal thresholds (PWTs), assessed using both von Frey hair and paw pressure tests, whereas an equi-effective dose of rofecoxib (5mg/kg, 5 days of treatment) in inflammatory pain models was ineffective. In rats treated with GW406381, the proportion of fibres showing spontaneous activity was significantly lower (15.58%) than that in the vehicle (32.67%)- and rofecoxib (39.66%)-treated rats. Ibuprofen, a non-selective COX inhibitor, at 5mg/kg, orally dosed three times a day for 5 days did not significantly affect the PWTs in CCI rats. In naïve rats, GW406381 did not significantly change the PWTs. These results illustrate that COX-2 may indeed play an important role in the maintenance of neuropathic pain following nerve injury, but that only certain COX-2 inhibitors, such as GW406381, are effective in this paradigm. Whilst the mechanisms underlying this differential effect of GW406381 are not clear, differences in drug/enzyme kinetic interactions may be a key contributing factor.
    [Abstract] [Full Text] [Related] [New Search]