These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A).
    Author: Antonio RV, da Silva LP, Vercesi AE.
    Journal: Biochim Biophys Acta; 1991 Feb 08; 1056(3):250-8. PubMed ID: 1705820.
    Abstract:
    A previous communication (Pereira da Silva, L., Bernardes, C.F. and Vercesi, A.E. (1984) Biochem. Biophys. Res. Commun. 124, 80-86) presented evidence that lasalocid-A, at concentrations far below those required to act as a Ca2+ ionophore, significantly inhibits Ca2+ efflux from liver mitochondria. In the present work we have studied the mechanism of this inhibition in liver and heart mitochondria. It was observed that lasalocid-A (25-250 nM), like nigericin, promotes the electroneutral exchange of K+ for H+ across the inner mitochondrial membrane and as a consequence can cause significant alterations in delta pH and delta psi. An indirect effect of these changes that might lead to inhibition of mitochondrial Ca2+ release was ruled out by experiments showing that the three observed patterns of lasalocid-A effect depend on the size of the mitochondrial Ca2+ load. At low Ca2+ loads (5-70 nmol Ca2+/mg protein), under experimental conditions in which Ca2+ release is supposed to be mediated by a Ca2+/2H+ antiporter, the kinetic data indicate that lasalocid-A inhibits the efflux of the cation by a competitive mechanism. The Ca2+/2Na+ antiporter, the dominant pathway for Ca2+ efflux from heart mitochondria, is not affected by lasalocid-A. At intermediate Ca2+ loads (70-110 nmol Ca2+/mg protein), lasalocid-A slightly stimulates Ca2+ release. This effect appears to be due to an increase in membrane permeability caused by the displacement of a pool of membrane bound Mg2+ possibly involved in the maintenance of membrane structure. Finally, at high Ca2+ loads (110-140 nmol Ca2+/mg protein) lasalocid-A enhances Ca2+ retention by liver mitochondria even in the presence of Ca2(+)-releasing agents such as phosphate and oxidants of the mitochondrial pyridine nucleotides. The maintenance of a high membrane potential under these conditions may indicate that lasalocid-A is a potent inhibitor of the Ca2(+)-induced membrane permeabilization. Nigericin, whose chemical structure resembles that of lasalocid-A, caused similar results.
    [Abstract] [Full Text] [Related] [New Search]