These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure.
    Author: Lermontova I, Grimm B.
    Journal: Plant J; 2006 Nov; 48(4):499-510. PubMed ID: 17059408.
    Abstract:
    Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
    [Abstract] [Full Text] [Related] [New Search]