These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular determination by electron microscopy of the actin filament end structure.
    Author: Narita A, Maéda Y.
    Journal: J Mol Biol; 2007 Jan 12; 365(2):480-501. PubMed ID: 17059832.
    Abstract:
    In eukaryotic cells, actin filaments play various crucial roles by altering their spatial and temporal distributions in the cell. The distribution of actin filaments is regulated by the binding of end-binding proteins, including capping protein (CapZ in muscle), the Arp2/3 complex, gelsolin, formin and tropomodulin, to the end of the actin filament. In order to determine the nature of these regulations, structural elucidations of actin filament-end-binding protein complexes are crucially important. Here, we have developed new procedures on the basis of single-particle analysis to determine the structure of the end of actin filaments from electron micrographs. In these procedures, the polarity of the actin filament image, as well as the azimuth orientation and the axial position of each actin protomer within a short stretch near the filament end, were determined accurately. This improved both the stability and accuracy of the structural determination dramatically. We tested our procedures by reconstructing structures from simulated filament images, which were obtained from 24 model structures for the actin-CapZ complex. These model structures were generated by random docking of the atomic structure of CapZ to the barbed end of an atomic model of the actin filament. Of the 24 model structures, 23 were recovered correctly by the present procedures. We found that our analysis was robust against local aberrations of the helical twist near the end of the actin filament. Finally, the procedures were applied successfully to determine the structure of the actin-CapZ complex from real cryo-electron micrographs of the complex. This is the first method for elucidating the detailed 3D structures at the end of the actin filament.
    [Abstract] [Full Text] [Related] [New Search]